This interview details VoltServer, a company based in the United States. The interview is with James Eaves, Ph.D., Indoor Agriculture Director at VoltServer.
A fundamental truth in global development is that economic prosperity grows with increased access to energy and information. However, expanding electrical infrastructure is often hindered by high costs. Overcoming this barrier is crucial for broader energy access and, consequently, economic growth.
VoltServer's founder and CEO, Stephen Eaves, recognized that the high cost is largely due to the dangers associated with high-voltage electricity, necessitating complex construction methods to prevent injuries and fires. After selling his previous energy company, he set a new goal: to make high-voltage electricity inherently safe.
He succeeded, and VoltServer officially opened its doors in July 2013, beginning product shipments in early 2014. Our patented Digital Electricity™ is powering over 1,000 large venues, including sports stadiums, office towers, hotels, condominiums, medical buildings, and vertical farms.
Digital Electricity™ is the first high-voltage power listed as a “Class 2” circuit. This means you can distribute electricity throughout your farm using 75% less equipment and labor, employing thin 18AWG wires without the need for conduit, breakers, stepdown transformers, or GFCIs. This is despite Digital Electricity™ distributing thousands of watts at 336VDC. Additionally, the system allows for control, monitoring, and scheduling of each individual LED without needing a separate control system.
The implications of Digital Electricity™ are so profound that the NEC introduced a new category of power, “Class 4”, marking the first such innovation in over half a century—an achievement VoltServer holds in high regard. Today, Digital Electricity™ is still installed under the Class 2 listing in all 50 states and Canada.
Our challenge lies in "path dependence." The world's electrical infrastructure is built around Alternating Current (AC) power, meaning most electrical equipment is designed to use it. For example, many modern electronics, like computers, LEDs, and batteries, actually run natively on Direct Current (DC). However, device manufacturers often install power supplies that convert AC to DC. This is inefficient, but due to 150 years of infrastructure investment in AC power, manufacturers continue producing AC-compatible equipment.
For instance, in the Controlled Environment Agriculture (CEA) market, we face the task of convincing LED manufacturers to produce driverless LEDs. Removing the driver can significantly reduce costs and improve LED reliability, but it requires manufacturers to change their production methods. But the market is finally shifting, and today, over a dozen manufacturers build Digital Electricity™-compatible LEDs.
VoltServer stands out as the only high-voltage power distribution system installable using low-voltage wiring methods. Our real competition is traditional AC or DC systems. Sometimes, people mistakenly equate Digital Electricity™ with low-voltage DC or Power over Ethernet, but those systems can only power low-powered devices close to the power source. Such systems aren't practical for CEA facilities or large buildings.
The current hot topic is the slow market growth for new farms and the bankruptcy filings of notable companies. Some argue that indoor farming was a fad that won't make a comeback. However, commercial bankruptcy rates have risen across most industries in recent years due to high interest rates, leading to higher bankruptcies and all industries and less construction in all capital-intensive industries like factories and commercial buildings. Most indoor growers I've spoken with say there is more demand than ever for their products. So, as interest rates begin to decline, we expect the indoor farming market to pick up again.
Controlled Environment Agriculture is still an emerging technology and practice, with low levels of control being leveraged. For instance, it's common for greenhouses to have 5-acre lighting zones, even though natural light variation within those zones averages about 40%. A typical greenhouse could easily reduce electricity used for lights by 15% while maintaining the same yields through more granular lighting control. Similarly, temperature varies considerably across an average greenhouse and indoor farm's canopy. This creates another opportunity to significantly reduce energy use through more granular control of airflow and lighting.
Better electrical design can also contribute. For indoor farms, distributing power at higher voltages, eliminating equipment like stepdown transformers, and centralizing power supplies outside of grow spaces can reduce energy use by up to 8%. Additionally, if a farmer uses renewable energy and battery storage, switching to DC distribution rather than AC can increase the efficiency of the renewable microgrid by up to 13%. Assuming electricity constitutes about 50% of OPEX, better electrical design combined with more granular control can reduce OPEX by up to 20%. This is significant for an industry where the best-performing companies have single-digit profit margins.
Feel free to connect with me directly on LinkedIn or visit VoltServer.com for more information.
This interview details Savills, a company based in the UK. The interview is with Joe Lloyd, analyst Savills rural research. To learn more about Savills and other indoor farming companies, click on this link!
View Full InterviewThis interview details Viscon, an indoor farming company based in The Netherlands. The interview is with Floris Berghout, Sales Manager at Viscon Plant Technology. To learn more about Viscon and other indoor farming companies, click on this link!
View Full InterviewThis interview details Gillespie Manners, a company based in the UK. The interview is with Zanaba Poland, Marketing Manager of Gillespie Manners. To learn more about Gillespie Manners and other indoor farming companies, click on this link!
View Full InterviewThis interview details Fieldwork Robotics, an indoor farming technology company based in the UK. The interview is with David Fulton, CEO of Fieldwork Robotics. To learn more about Fieldwork Robotics and other indoor farming companies, click on this link!
View Full InterviewThis interview details Tech 4.0, a company based in the UK. The interview is with Jonathan Martin, Director at Tech 4.0. To learn more about Tech 4.0 and other indoor farming companies, click on this link!
View Full InterviewThis interview details Van Dijk heating, a company based in the Netherlands. The interview is with Freek van Rijn, Managing Director at Van Dijk heating. To learn more about Van Dijk heating and other indoor farming companies, click on this link!
View Full InterviewThis interview details Concert Bio, a company based in the UK. The interview is with Dr. Paul Rutten, Founder & CEO of Concert Bio. To learn more about Concert Bio and other indoor farming companies, click on this link!
View Full InterviewThis interview details Mycro Harvest, an indoor farming company based in Canada. The interview is with Christopher Klich, Co-Founder & CEO of Mycro Harvest. To learn more about Mycro Harvest and other indoor farming companies, click on this link!
View Full InterviewThis interview details Vertical Gardens Ltd, an indoor farming company based in Kenya. The interview is with Fred Mwithiga, Co-Founder of Vertical Gardens Ltd. To learn more about Vertical Gardens Ltd and other indoor farming companies, click on this link!
View Full InterviewThis interview details Zenith Global, a company based in the UK. The interview is with Richard Hall, Chairman of Zenith Global. To learn more about Zenith Global and other indoor farming companies, click on this link!
View Full Interview